Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Food Sci Technol ; 51(11): 3369-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26396333

RESUMO

Yellow Himalayan raspberry, a wild edible fruit, was analyzed for phenolic contents, and antioxidant, antibacterial and antiproliferative activities. Phenolics were extracted using 80 % aqueous solvents containing methanol, acidic methanol, acetone and acidic acetone. Our analysis revealed that the acidic acetone extracts recovered the highest level of total phenolics (899 mg GAE/100 g FW) and flavonoids (433.5 mg CE/100 g FW). Free radical scavenging activities (DPPH, ABTS, superoxide and linoleate hydroperoxide radicals) and ferric reducing activity were highest in the acetone and acidic acetone extracts. No metal chelating or antibacterial activity was detected in any of the extracts. Acetone and methanol extracts showed potent antiproliferative activity against human cervical cancer cells (C33A) with an EC50 of inhibition at 5.04 and 4. 9 mg/ml fruit concentration respectively, while showing no cytotoxicity to normal PBMCs cells. Therefore, the present study concluded that the yellow Himalayan raspberry is a potent source of phytochemicals having super antioxidant and potent antiproliferative activities.

2.
Biosci Biotechnol Biochem ; 77(5): 961-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23666511

RESUMO

The present study aimed at a comparative characterization of two distinct extracellular monocrotophos hydrolases, from Penicillium aculeatum ITCC 7980.10 (M3) and Fusarium pallidoroseum ITCC 7785.10 (M4), isolated from agricultural fields. The MCP hydrolases were purified by Sephadex G-100 column and DEAE-Sepharose CL-6B ion-exchange column followed by SDS-PAGE analysis, which showed the presence of two hydrolases, of 33 and 67 kDa respectively. Both enzymes were most active at alkaline pH and were stable over a wide range of temperatures (60-70 °C). Between the strains, the MCP hydrolases from M3 were 2-fold more active than that from M4. Enzyme kinetic studies showed lowest Km (33.52 mM) and highest Vmax (5.18 U/mg protein) for OPH67 of M3 in comparison to the Km and Vmax of the other hydrolases purified from M3 and M4, suggesting that M3 OPH67 was the most efficient MCP hydrolase. To the best of our knowledge, this is the first report of the purification of two distinct extracellular thermostable MCP hydrolases from fungal strains Penicillium aculeatum ITCC 7980.10 and Fusarium pallidoroseum ITCC 7785.10. Owing to its potential MCP hydrolyzing activity, M3 OPH67 can perhaps used directly or in the encapsulated form for remediation of MCP contaminated sites.


Assuntos
Agricultura , Espaço Extracelular/enzimologia , Fusarium/citologia , Hidrolases/metabolismo , Monocrotofós/isolamento & purificação , Penicillium/citologia , Amidas/química , Biodegradação Ambiental , Estabilidade Enzimática , Fusarium/isolamento & purificação , Hidrolases/isolamento & purificação , Hidrólise , Cinética , Monocrotofós/química , Monocrotofós/metabolismo , Penicillium/isolamento & purificação , Praguicidas/química , Praguicidas/isolamento & purificação , Praguicidas/metabolismo
3.
J Environ Sci (China) ; 23(6): 975-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22066220

RESUMO

A new bacterial strain DMT-7 capable of selectively desulfurizing dibenzothiophene (DBT) was isolated from diesel contaminated soil. The DMT-7 was characterized and identified as Lysinibacillus sphaericus DMT-7 (NCBI GenBank Accession No. GQ496620) using 16S rDNA gene sequence analysis. The desulfurized product of DBT, 2-hydroxybiphenyl (2HBP), was identified and confirmed by high performance liquid chromatography analysis and gas chromatography-mass spectroscopy analysis respectively. The desulfurization kinetics revealed that DMT-7 started desulfurization of DBT into 2HBP after the lag phase of 24 hr, exponentially increasing the accumulation of 2HBP up to 15 days leading to approximately 60% desulfurization of the DBT. However, further growth resulted into DBT degradation. The induced culture of DMT-7 showed shorter lag phase of 6 hr and early onset of stationary phase within 10 days for desulfurization as compared to that of non-induced culture clearly indicating the inducibility of the desulfurization pathway of DMT-7. In addition, Lysinibacillus sphaericus DMT-7 also possess the ability to utilize broad range of substrates as sole source of sulfur such as benzothiophene, 3,4-benzo DBT, 4,6-dimethyl DBT, and 4,6-dibutyl DBT. Therefore, Lysinibacillus sphaericus DMT-7 could serve as model system for efficient biodesulfurization of diesel and petrol.


Assuntos
Bacillus/metabolismo , Biodegradação Ambiental , Gasolina , Microbiologia do Solo , Poluentes do Solo/metabolismo , Tiofenos/metabolismo , Bacillus/classificação , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Meios de Cultura/química , Poluentes do Solo/química , Tiofenos/química
4.
Braz. j. microbiol ; 40(4): 884-892, Oct.-Dec. 2009. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-528171

RESUMO

Benzo [a] Pyrene (BaP) is a highly recalcitrant, polycyclic aromatic hydrocarbon (PAH) with high genotoxicity and carcinogenicity. It is formed and released into the environment due to incomplete combustion of fossil fuel and various anthropogenic activities including cigarette smoke and automobile exhausts. The aim of present study is to isolate bacteria which can degrade BaP as a sole source of carbon and energy. We have isolated a novel strain BMT4i (MTCC 9447) of Bacillus subtilis from automobile contaminated soil using BaP (50 ìg /ml) as the sole source of carbon and energy in basal salt mineral (BSM) medium. The growth kinetics of BMT4i was studied using CFU method which revealed that BMT4i is able to survive in BaP-BSM medium up to 40 days attaining its peak growth (10(29) fold increase in cell number) on 7 days of incubation. The BaP degradation kinetics of BMT4i was studied using High Performance Liquid Chromatography (HPLC) analysis of BaP biodegradation products. BMT4i started degrading BaP after 24 hours and continued up to 28 days achieving maximum degradation of approximately 84.66 percent. The above findings inferred that BMT4i is a very efficient degrader of BaP. To our best of knowledge, this is the first report showing utilization of BaP as a sole source of carbon and energy by bacteria. In addition, BMT4i can degrade a wide range of PAHs including naphthalene, anthracene, and dibenzothiophene therefore, it could serve as a better candidate for bioremediation of PAHs contaminated sites.


Assuntos
Bacillus subtilis/isolamento & purificação , Genotoxicidade , Pirenos/análise
5.
Braz J Microbiol ; 40(4): 884-92, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031437

RESUMO

Benzo [a] Pyrene (BaP) is a highly recalcitrant, polycyclic aromatic hydrocarbon (PAH) with high genotoxicity and carcinogenicity. It is formed and released into the environment due to incomplete combustion of fossil fuel and various anthropogenic activities including cigarette smoke and automobile exhausts. The aim of present study is to isolate bacteria which can degrade BaP as a sole source of carbon and energy. We have isolated a novel strain BMT4i (MTCC 9447) of Bacillus subtilis from automobile contaminated soil using BaP (50 g /ml) as the sole source of carbon and energy in basal salt mineral (BSM) medium. The growth kinetics of BMT4i was studied using CFU method which revealed that BMT4i is able to survive in BaP-BSM medium up to 40 days attaining its peak growth (10(29) fold increase in cell number) on 7 days of incubation. The BaP degradation kinetics of BMT4i was studied using High Performance Liquid Chromatography (HPLC) analysis of BaP biodegradation products. BMT4i started degrading BaP after 24 hours and continued up to 28 days achieving maximum degradation of approximately 84.66 %. The above findings inferred that BMT4i is a very efficient degrader of BaP. To our best of knowledge, this is the first report showing utilization of BaP as a sole source of carbon and energy by bacteria. In addition, BMT4i can degrade a wide range of PAHs including naphthalene, anthracene, and dibenzothiophene therefore, it could serve as a better candidate for bioremediation of PAHs contaminated sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA